

Materials for a new revolution in energy storage

Although the number of studies of various phenomena related to the performance of nanomaterials in energy storage is increasing year by year, only a few of them--such as graphene sheets, carbon nanotubes (CNTs), carbon black, and silicon nanoparticles--are currently used in commercial devices, primarily as additives (18).

In energy storage systems, nature-inspired nanomaterials have been highly anticipated to obtain the desired properties. Such nanostructures of nature-inspired nanomaterials include porous carbon, metal oxides/sulfides/phosphides/selenides/hydroxides, and others that have shown exemplary performance in electrochemical energy storage devices.

Silicon-based energy storage systems are emerging as promising alternatives to the traditional energy storage technologies. This review provides a comprehensive overview of the current state of research on silicon-based energy storage systems, including silicon-based batteries and supercapacitors.

The diversity of materials for current lithium-based batteries suggest that, unlike solar photovoltaics or wind turbines, it is likely new material advances in storage technologies ...

Silicon nanostructures for solid-state hydrogen storage: A review. Int J Hydrogen Energy Pomerantseva E, Bonaccorso F, Feng X, Cui Y, Gogotsi Y (2019) Energy storage: The future enabled by nanomaterials. Science 366 (6468):eaan8285

The development of nanomaterials and their related processing into electrodes and devices can improve the performance and/or development of the existing energy storage systems. We provide a perspective on recent progress in the application of nanomaterials in energy storage devices, such as supercapacitors and batteries.

This article discusses the unique properties of silicon, which make it a suitable material for energy storage, and highlights the recent advances in the development of silicon-based energy storage systems.

Developments in carbon dioxide (CO 2) capture and hydrogen (H 2) storage using tunable structured materials are discussed. Design and characterization of new nanoscaled materials ...

This article discusses the unique properties of silicon, which make it a suitable material for energy storage, and highlights the recent advances in the development of silicon ...

Web: https://eriyabv.nl

Chat online: https://tawk.to/chat/667676879d7f358570d23f9d/1i0vbu11i?web=https://eriyabv.nl